WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 


Разработка энергосберегающей электротехнологии сбраживания навоза с использованием объемного свч – нагрева

На правах рукописи

Решетникова Ирина Валентиновна

РАЗРАБОТКА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЭЛЕКТРОТЕХНОЛОГИИ СБРАЖИВАНИЯ НАВОЗА С ИСПОЛЬЗОВАНИЕМ ОБЪЕМНОГО

СВЧ НАГРЕВА

Специальность 05.20.02 – электротехнологии и электрооборудование

в сельском хозяйстве

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Ижевск 2009

Работа выполнена на кафедре «Технологии и оборудование пищевых и перерабатывающих производств» Федерального государственного образовательного учреждения высшего профессионального образования «Ижевская государственная сельскохозяйственная академия» (ФГОУ ВПО Ижевская ГСХА)

Научный руководитель доктор технических наук, профессор Касаткин Владимир Вениаминович

Официальные оппоненты: доктор технических наук, профессор

Беззубцева Марина Михайловна

кандидат технических наук, доцент

Дородов Павел Владимирович

Ведущая организация: Государственное учреждение зональный научно-исследовательский институт сельского хозяйства Северо – Востока им.И.В.Рудницкого (НИИСХ Северо-Востока им.Рудницкого)

Защита состоится «06» ноября 2009 г. в 10.00 часов на заседании диссертационного совета КМ 220.030.02 в ФГОУ ВПО «Ижевская ГСХА» по адресу: 426069, г. Ижевск, ул. Студенческая, д. 9-315.

С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО «Ижевской государственной сельскохозяйственной академии», а с авторефератом на сайте http://izhgsha.ru

Отзывы на автореферат в двух экземплярах, заверенные печатью, просим высылать по адресу: 426069, г. Ижевск, ул. Студенческая, д.11, Диссертационный совет. Телефон/факс: 58-99-47.

Автореферат размещен на сайте и разослан 03 октября 2009г.

Ученый секретарь диссертационного совета,

кандидат технических наук Н.Ю. Литвинюк

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

Сегодня в мире использование нетрадиционных возобновляемых источни­ков энергии (НВИЭ) достигло промышленного уровня, ощутимого в энергоба­лансе ряда стран. Масштабы применения НВИЭ в мире непрерывно и интенсив­но возрастают. Это направление является одним из наиболее динамично разви­вающихся среди других направлений в энергетике.

В последнее время всё большее внимание привлекают нетрадиционные, - с технической точки зрения, источники энергии: солнечное излучение, морские приливы и волны, геотермальные источники, энергия ветра, энергия биомассы и мн. др. Некоторые из них, например, ветер и энергия биомассы, находили широ­кое применение и в прошлом, а сегодня переживают второе рождение.

Теоретические вопросы, посвященные переработке отходов АПК, рассматривали в своих работах российские ученые: Гужулев Э.П., Дубровский В.С., Бацанов И.Н., Ковалев Н.Г., Марченко В.И., Шрамков В.М., Зуев В.А. и др.; и зарубежные ученые Kelly W.F., Anderson P.A., Baker D.N. и др.

В ИжГСХА начиная с 1995 года на кафедре «Механизации и переработки сельскохозяйственной продукции», началось развитие одного из научных направлений по теме: Утилизация отходов сельскохозяйственного производства. С 2004 года этим направлением начал заниматься доцент Игнатьев Сергей Петрович. В составе творческой группы работала и Свалова Марианна Викторовна. Результатом наших исследований стали выигранные конкурсы в Министерстве природных ресурсов и охраны окружающей среды Удмуртской Республики и в Министерстве сельского хозяйства Российской Федерации. Поэтому можно говорить об актуальности выбранного направления исследований.

Цель работы. Интенсификация и повышение эффективности переработки навоза для получения биогаза как источника энергии на основе энергосберегающей электротехнологии.

Объект исследования. Электротехнологический трехстадийный процесс работы биогазовой установки.

Предмет исследования. Закономерности трехстадийного процесса работы биогазовой установки на основе энергосберегающей электротехнологии.

Основные положения, выносимые на защиту:

- энергосберегающий метод непрерывного сбраживания навоза с использованием СВЧ энергии;

- механизм расчета и оценки энергоемкости работы биогазовой установки;

- физические модели и математическое описание процессов сбраживания непрерывного действия с СВЧ нагревом;

- технология метанового сбраживания навоза с применением СВЧ излучения и изготовление образца биогазовой установки непрерывного действия, реализующего эту технологию;

- эффективность разработанной технологии.

Научную новизну работы составляют:

- способ нагрева навоза на биогазовых установках непрерывного действия с объемным электромагнитным излучением (СВЧ), реализующий трехстадийный процесс в едином цикле;

- физические модели и математическое описание процессов сбраживания навоза на метантенках непрерывного действия с СВЧ нагревом, позволяющие определять режимы технологического процесса и параметры проектируемого оборудования;





- математическая модель энергоемкости технологического процесса на метантенках непрерывного действия на основе метода конечных отношений, позволяющая оптимизировать энергоемкость процесса.

Практическая значимость и реализация результатов исследований.

- разработан и испытан опытный образец лабораторной непрерывно - действующей биогазовой установки, на основе которого может быть создана промышленная установка;

- температурные технологические режимы на основе переработки навоза;

- разработан лабораторный технологический процесс, обеспечивающий оптимизацию энергозатрат при переработке навоза за счет объединения стадий и применения СВЧ нагрева.

Апробация работы. Основные положения работы доложены на научно-практических конференциях: в ФГОУ ВПО Ижевская ГСХА «Инновационное развитие АПК. Итоги и перспективы», Ижевск, 2007; в ФГОУ ВПО Пермский ГСХА на всероссийской научно-практической конференции молодых ученых, аспирантов и студентов «Вклад молодых ученых в развитие АПК», Пермь, 2007 г; «Научный потенциал аграрному производству посвящается 450 - летию вхождения Удмуртии в состав России», Ижевск, 2008г.; в ГОУ ВПО «Магнитогорский Государственный университет им. Г.И.Носова» на Всероссийской научно-практической конференции «Актуальные проблемы территориального развития», 2008 г.

Публикации. По материалам диссертации опубликовано 7 статей, в том числе 3 статьи в научных журналах, входящих в перечень ВАК.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, общих выводов, списка литературы и приложений. Объем работы составляет 124 страниц, 32 рисунка, 11 таблиц и 5 приложений. Список литературы включает 184 наименования, в том числе 7 на иностранном языке.

СОДЕРЖАНИЕ РАБОТЫ

Во введении изложена актуальность проблемы, цель, научная новизна и практическая ценность работы.

В первой главе «Анализ состояния вопроса утилизации навоза в сельскохозяйственном производстве» на основе анализа научных и литературных источников исследуется проблема утилизации навоза в сельскохозяйственном производстве. В нашей стране недостаточно отработанных промышленных технологий, позволяющих масштабно решать проблему утилизации отходов АПК.

Проблема утилизации отходов имеет важное экологическое, экономическое и энергосберегающее значение. Наиболее перспективным вариантом переработки отходов производства в ценный удобрительный материал является анаэробное сбраживание, которое сопровождается получением биогаза.

Особое внимание уделяется развитию технологий получения биогаза, получающегося при утилизации отходов сельскохозяйственных производств.

Отходы биомассы ферм и жидкие составляющие являются загрязнителями окружающей среды. Повышенная восприимчивость сельскохозяйственных культур к отходам приводит к загрязнению грунтовых вод и воздушного бассейна, создает благоприятную среду для заражения почвы вредными микроорганизмами. В отходах животных жизнедеятельность болезнетворных бактерий и яиц гельминтов не прекращается, содержащиеся в нем семена сорных трав сохраняют свои свойства.





Для устранения этих негативных явлений необходима специальная технология утилизации отходов биомассы, позволяющая повысить концентрацию питательных веществ и одновременно устранить неприятные запахи, подавить патогенные микроорганизмы, снизить содержание канцерогенных веществ и получить дополнительно источник энергии.

Из анализа способов и методов утилизации отходов и ряда существующих проблем, вытекают задачи:

 - разработать энергосберегающий метод непрерывного сбраживания навоза с использованием СВЧ энергии;

- создать физические модели и дать математические описания процессов сбраживания непрерывного действия с СВЧ нагревом;

- разработать и изготовить образец биогазовой установки непрерывного действия, реализующий технологию метанового сбраживания навоза с применением объемного СВЧ излучения;

- обосновать эффективность разработанной технологии.

Во второй главе «Теоретические и лабораторные исследования интенсивных методов сбраживания отходов с/х производства» предложено соединить в единый цикл три стадии метанового сбраживания с целью интенсификации и оптимизации равномерного объемного разогрева метантенка. На основании анализа состояния вопроса, теоретических и лабораторных исследований определяем, что непрерывный процесс переработки навоза при объемном и СВЧ излучении, включает в себя комплекс взаимосвязанных сложных теплофизических процессов: дозированная загрузка отходов, нагрев биомассы, периодическое перемешивание, дозированная выгрузка переработанного субстрата, сбор и резервирование газа.

Для изучения этих процессов была разработана установка, состоящая из СВЧ шкафа, шлангов, водного затвора, жидкостного манометра, счетчика электрической энергии. Проводились эксперименты с двумя образцами: свиной и коровий навоз. Установка для проведения экспериментов трех стадий метанового сбраживания с СВЧ нагревом, показана на рисунке 1.

Рисунок 1 Установка для проведения экспериментов трех стадий метанового сбраживания с СВЧ нагревом: 1 – СВЧ шкаф; 2 - Шланги; 3 – Водный затвор;

4 – Жидкостный манометр; 5 - Счетчик электрической энергии

На рисунке 2 показана кинетика выделения биогаза в зависимости от температуры и времени сбраживания при контактном нагреве свиного (1) и коровьего (2) навоза, а также контактный нагрев в трех режимах сбраживания.

Рисунок 2 – Кинетика выделения биогаза в зависимости от температуры и времени сбраживания при контактном нагреве свиного (1) и коровьего (2) навоза

На рисунке 3 приведены сравнительные характеристики выделения биогаза в зависимости от температуры и времени сбраживания свиного навоза при контактном и СВЧ нагреве.

Рисунок 3 - Кинетика выделения биогаза в зависимости от температуры и времени сбраживания свиного навоза при контактном и СВЧ нагреве

Анализируя полученные данные и графики на рисунках 2 и 3, выявили основные подходы к методам интенсификации процесса нагрева. Интенсификация за счет равномерного объемного разогрева метантенка до 55оС и объединения трех стадий сбраживания в единый цикл позволит потери тепла высокотемпературной зоны использовать для нагрева субстрата предыдущих стадий, что сократит время нагрева навоза при экономии энергии на разогрев.

За критерии оптимизации принимаем максимальный выход биогаза и минимизацию затрат энергии. На основе теоретических и экспериментальных данных разрабатываем схему физической модели процесса метанового сбраживания навоза с СВЧ нагревом, которая представлена на рисунке 4.

Схема физической модели процесса непрерывного метанового сбраживания с СВЧ нагревом разработана так, что высокотемпературная (термофильная) зона находится в центральной части метантенка, при этом температура центральной зоны разогревает мезофильную и психрофильную зоны за счет контактного разогрева через перегородки, разделяющие эти зоны, и диффузии субстрата.

Рисунок 4 – Схема физической модели процесса метанового сбраживания

В принципиальной схеме данной физической модели процесса метанового сбраживания идет непрерывный процесс газообразования, так как присутствуют все стадии анаэробной переработки навоза.

Диэлектрический нагрев в центральной секции метантенка осуществляется в пределах температуры 40…55оС, что соответствует термофильному режиму сбраживания. Эта температура поддерживается постоянно, для обеспечения непрерывного режима работы реактора. При поддержании заданного максимума температуры происходит постоянный теплообмен биомассы, который позволяет достичь двух других режимов сбраживания в метантенке. Теплообмену способствуют диффузионный процесс при загрузке и выгрузке сырья, а также циклическое перемешивание субстрата. Мезофильный режим сбраживания происходит во второй секции метантенка, где за счет конвективного нагрева достигается температура в пределах 25…40оС. В первой секции реактора диапазон температур соответствует психрофильному режиму сбраживания с диапазоном температур в пределах 8…25оС.

Диэлектрический нагрев является самым подходящим для этой технологии переработки навоза, так как идет практически выделение тепла во всем объеме обрабатываемого субстрата.

Исходя из проведенных экспериментов, обосновали объединение в единый цикл (реактор) трех стадий метанового сбраживания с объемным разогревом метантенка и выявили основные режимы сбраживания (психрофильный при 8…25оС, мезофильный при 25…40оС и термофильный при 40…55оС).

В третьей главе «Теоретическое обоснование интенсификации и энергосбережения при метановом сбраживании навоза» разработана математическая модель процесса сбраживания.

На рисунке 5 показан процесс передачи теплоты субстрату, который заключается в том, что энергия, подводимая к магнетрону по средством электрического преобразования, переходит в тепловую, тем самым происходит объемный разогрев метантенка путем послойной передачи теплоты qn.

Рисунок 5 - Схема нагрева биомассы СВЧ излучением

Расход энергии в расчете на нагрев 1 кг субстрата для конвективной камеры равен

(1)

где К - коэффициент теплопередачи стены метантенка; tр - среднее значение температуры субстрата внутри метантенка за весь рассматриваемый промежуток времени в расчетной зоне; to - среднее значение температуры окружающего воздуха за тот же промежуток времени; б - базисная плотность субстрата; Wн - влажность субстрата; Sк/Vк - отношение площади внутренней поверхности конвективной камеры к объему загрузки субстрата в нее; к - продолжительность оборота конвективной камеры; - рассматриваемый промежуток времени, в течение которого происходят потери тепла.

Передача теплоты через стенку, а также потери теплопередачи между секциями метантенка, записаны следующими выражениями:

(2)

, (3)

где - температуры внутренней и наружной поверхностей стенки, - температура сред, - коэффициенты теплоотдачи, - плотность теплового потока, и показаны на рисунке 6. Потери – передача теплоты, учитываются между всеми секциями метантенка, которые описываются уравнением (3).

Рисунок 6 – Теплопередача между секциями метантенка

Для окончательного расчета энергоемкости всей установки на основе метода конечных отношений разработали математическую модель. С этой целью схему физической модели установки метанового сбраживания (рис. 4), показываем в виде формализованного изображения процесса энергопотребления и энергопроизводства на основе которого и разрабатываем математическую модель энергоемкости, как отдельных стадий работы метантенка, так и всей установки в целом.

В формализованном изображении (таблица 1) энергопроизводство включает в себя энергоемкости стадий метанового сбраживания и энергоемкость полученного биогаза. Для обеспечения работоспособности оборудования необходимо, чтобы система управления поддерживала в метантенке необходимые режимы, заданные технологическим процессом.

Математическая модель энергоемкости технологии метанового сбраживания биомассы, на установках непрерывного действия с СВЧ нагревом, представлена в таблице 2, где индекс q21 есть произведение энергоемкости энергетических параметров затраченных на загрузку навоза. Остальные индексы (q31-q61) аналогичны соответствующим процессам, обеспечивающих работу метантенка. Общая энергоемкость q7 получается в результате суммы энергоемкости технологического процесса на произведение энергоемкости системы управления.

Таблица 1- Формализованное изображение процесса энергопотребления и энергопроизводства

qij1 qij2 qij3 qi qij
Биомасса       (влажность 90…93%)   q1      Параллельно всему процессу
Подвод Питание Насос Загрузка q2 q21
Подвод Питание Перемешивающее устройство Психрофильный режим, перемешивание субстрата q3 q31
Подвод Питание Перемешивающее устройство Мезофильный режим, перемешивание субстрата q4 q41
Система управления
Подвод Питание Перемешивающее устройство Термофильный режим, перемешивание субстрата q5 q51
Шкаф управления
Подвод Питание Конвективно-диэлектрический нагрев q52
Питание
Подвод Питание Затвор Выгрузка шлама q6 q61
биогаз /переработанный субстрат q7        Подвод

Таблица 2- Математическая модель энергоемкости технологии метанового сбраживания навоза на установках непрерывного действия с СВЧ нагревом

Биомасса q1
q211= q212= q213= q21= q211 q212 q213 q2=
q311= q312= q313= q31= q311 q312 q313 q3=
q411= q412= q413= q41= q431 q432 q433 q4=
q511= q512= q513= q51= q511 q512 q513
q521= q522= q523= q52= q521 q522 q523
q611= q612= q613= q61= q611 q612 q613 q6 =
q2 + q3 + q4 + q5+ q6 = ++++ q11 q12 q13
переработанный субстрат q7 =

В четвертой главе «Разработка технологии процесса метанового сбраживания в установках с СВЧ нагревом и экспериментальные исследования процесса» представлен технологический процесс метанового сбраживания навоза и обработка экспериментальных исследований метанового сбраживания при объемном диэлектрическом нагреве.

Технологический процесс по переработке навоза на предприятиях АПК представлен на рисунке 7.

Рисунок 7 – Структурная схема линии по переработке навоза

Исходным сырьем, поступающим в линию, является свиной и коровий навоз. В начале технологического процесса переработки навоза в метантенке получаем органический субстрат и биогаз. Важным условием для анаэробного сбраживания является оптимальная температура вещества в метантенке, поддержание которой обеспечивается конвективно-диэлектрическим нагревом.

Принцип работы трехстадийного метантенка биогазовой установки с СВЧ нагревом заключается в том, что подготовленная для сбраживания масса поступает в первую секцию 10 (психрофильную с диапазоном температур 8...25°С) биореактора, показанного на рисунке 8. Перемешивание в данной камере при помощи мешалок 3 осуществляется частотой 1 раз в сутки час с продолжительностью 10 мин и со скоростью вращения мешалок 24…33 об/мин. Затем биомасса по принципу сообщающихся сосудов перемещается во вторую 11 (мезофильную с диапазоном температур - 25...40 °С) в которой перемешивание осуществляется частотой 1 раз в 2 часа с продолжительностью 10 мин и со скоростью вращения мешалок 42…51 об/мин; и третью 12 (термофильную с диапазоном температур - 40...55 °С) частотой перемешивания субстрата 1 раз в час с продолжительностью 10 мин и со скоростью вращения мешалок 51…60 об/мин.

Рисунок 8 – Схема трехстадийного метантенка биогазовой установки с СВЧ нагревом

Трехстадийный метантенк биогазовой установки с СВЧ нагревом состоит из корпуса, систем контроля и управления. Сбраживаемая масса подогревается устройством диэлектрического нагрева в центральной секции до температуры 55°С, которая контролируется термодатчиками 8 нижнего и верхнего уровня. Перемешивание происходит периодически 2...3 раза в сутки при помощи перемешивающих устройств 3. Выделяющийся биогаз, собирают и хранят в резервуаре низкого давления. Получившийся в процессе сбраживания шлам поступает в ёмкость 9 для дальнейшей переработки. Реактор сконструирован так, что идет непрерывный процесс газообразования, так как присутствуют все стадии анаэробной переработки навоза.

Опытный образец установки непрерывного действия, реализующий процесс сбраживания навоза, согласно схемы на рисунке 8, в едином цикле представлен на рисунке 9.

Установка для получения биогаза непрерывного действия с СВЧ нагревом состоит из реактора, который разделен на три секции. Загрузка и выгрузка осуществляется при помощи насосов. Переход биомассы из секции в секцию происходит по принципу сообщающих сосудов. Получаемый в процессе метанового сбраживания биогаз, поступает в емкость для сбора газа. Количество выделяемого газа контролируется газовым счетчиком.

Возможность объединения психрофильного, мезофильного и термофильного режимов метанового сбраживания проверена и подтверждена экспериментально на данной установке.

а

б

Рисунок 10 - Кинетика получения биогаза в едином цикле сбраживания:

а – контактный нагрев, б - СВЧ нагрев

Результаты экспериментальных исследований метанового сбраживания при СВЧ нагреве со свиным и коровьим навозом, показали, что процесс сбраживания биомассы происходит интенсивнее по всему объему метантенка, реализующую разработанную технологию, за счет объемного нагрева (рисунок 10).

В пятой главе «Технико-экономические показатели и экономическая эффективность разработанных методов, установок и технологий» показана технико-экономическая оценка проведенных мероприятий, на основе методики расчета экономической эффективности, разработанный во Всероссийском институте электрификации сельского хозяйства и на основе диаграммной техники профессора В.Н. Карпова, которые показали, что проведенные мероприятия дают экономический эффект равный 573320 руб. Срок окупаемости биогазовой установки около шести лет. Сравнительная универсальная диаграмма с двумя способами нагрева показана на рисунке 11.

Рисунок 11 - Сравнительная универсальная диаграмма с двумя способами нагрева: 1 - контактный нагрев; 2 – СВЧ нагрев

Результаты расчетов технико-экономических показателей полностью совпадают с данными полученными на универсальной диаграмме.

ВЫВОДЫ

1. Метод объемного энергосберегающего нагрева процесса метанового сбраживания навоза, позволяющий наиболее полно использовать энергетический и питательный потенциал исходного сырья, может быть перспективен для получения новых продуктов функционального назначения и кормов, конкурентноспособных на отечественном рынке.

2. Рациональное распределение по объему сбраживания дополнительных видов энергии волновой природы снижает энергоемкость процесса по сравнению с конвективно-контактной в 1,5…2,0 раза за счет новой схемы реактора (сочетающем вид энергии, стадийность ее использования и объемное распределение).

3. Физические и математические модели процесса, разработанные в диссертации, обеспечивают расчет режимов технологических процессов по заданным количественным и качественным показателям готовых продуктов и определение параметров оборудования для достижения заданной производительности.

4. На разработанной экспериментальной биогазовой установке метанового сбраживания непрерывного действия реализован стадийный подвод энергии разных видов и экспериментально установлены рациональные энергетические параметры:

  • психрофильное сбраживание (первая стадия) при температуре 8…25оС, обеспечиваемое за счет: загрузки исходного сырья температурой 0…10°С, конвективного и контактного нагрева от материла следующей стадии и перемешивания (частотой 1 раз в сутки час с продолжительностью 10 мин и со скоростью вращения мешалок 24…33 об/мин);
  • мезофильное сбраживание (вторая стадия) при температуре 25…40оС, обеспечиваемое за счет: поступления сырья из зоны первого периода сбраживания температурой 20…25°С, конвективного и контактного нагрева от материла следующей стадии и перемешивания (частотой 1 раз в 2 часа с продолжительностью 10 мин и со скоростью вращения мешалок 42…51 об/мин);
  • термофильное сбраживание (третья стадия) при температуре 40…55оС, обеспечиваемое за счет: поступления сырья из зоны второго периода сбраживания температурой 25…40°С, объемного диэлектрического, конвективного и контактного нагрева от источника СВЧ излучения и перемешивания (частотой 1 раз в час с продолжительностью 10 мин и со скоростью вращения мешалок 51…60 об/мин).

5. Параметры и режимы технологических процессов, обеспечивающие минимальную энергоемкость, использованы при выполнении Государственного контракта № 1664/13 от 11.11.2008 г. с Министерством сельского хозяйства Российской Федерации, где реализована технология промышленной переработки помета в удобрение, содержащая технологические и технические решения по производству органических удобрений на пометной основе.

6. Экономический эффект от применения СВЧ нагрева за счет мер по энергосбережению (объемный, равномерный разогрев, использование потерь энергии с высокотемпературной зоны для разогрева предыдущих низкотемпературных зон сбраживания) даст экономическую выгоду от выхода биогаза, которая составляет 573320 руб. при сроке окупаемости биогазовой установки около шести лет.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИССЕРТАЦИИ

ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ:

Издания, указанные в перечне ВАК:

1. Решетникова, И.В. Отходы – на службу сельской энергетике. /И.В. Решетникова, М.А.Валиулин, С.П.Игнатьев, Е.Г.Трефилов //Механизация и электрификация сельского хозяйства. - 2008. - №12. - С.56-57.

2. Савушкин, А.В. Альтернативное топливо в сельском хозяйстве. /А.В.Савушкин, В.С. Вохмин, И.В. Решетникова //Механизация и электрификация сельского хозяйства. - 2009. - №4. - С.37-38.

3. Кошкин, М.В. Перспективы использования биогаза. /М.В.Кошкин, И.В.Решетникова, А.В.Савушкин //Механизация и электрификация сельского хозяйства. - 2009. - №6. - С.33-34.

Другие издания:

4. Решетникова, И.В. Биогаз и установки по использованию биогаза для предприятий АПК. /И.В.Решетникова, М.А.Валиулин, М.В.Кошкин, В.С.Вохмин

//Научный потенциал аграрному производству посвящается 450 - летию вхождению Удмуртии в состав России. Всероссийская научно-практическая конференция, 26-29 февраля 2008г./ ФГОУ ВПО ИжГСХА. - Ижевск: Изд-во ФГОУ ВПО ИжГСХА, 2008. – Т.IV. - С.188-195.

5. Решетникова, И.В. Проблемы утилизации навоза. /И.В.Решетникова, М.А.Валиулин, С.В.Петров //Научный потенциал аграрному производству посвящается 450 - летию вхождению Удмуртии в состав России. Всероссийская научно-практическая конференция, 26-29 февраля 2008г./ ФГОУ ВПО ИжГСХА. - Ижевск: Изд-во ФГОУ ВПО ИжГСХА, 2008.- Т.IV. – С.195-199.

6. Решетникова, И.В. Разновидности биогазовых установок. /И.В.Решетникова, М.А.Валиулин, Р.С.Петров //Научный потенциал аграрному производству посвящается 450 - летию вхождению Удмуртии в состав России. Всероссийская научно-практическая конференция, 26-29 февраля 2008г./ ФГОУ ВПО ИжГСХА.- Ижевск: Изд-во ФГОУ ВПО ИжГСХА, 2008. - Т.IV. – С.208-212.

7. Свалова, М.В. Разработка установки для переработки отходов сельхозпроизводства. /В.В. Касаткин, С.П. Игнатьев, И.В. Решетникова // Научный потенциал аграрному производству посвящается 450 - летию вхождению Удмуртии в состав России. Всероссийская научно-практическая конференция, 26-29 февраля 2008г./ ФГОУ ВПО ИжГСХА.- Ижевск: Изд-во ФГОУ ВПО ИжГСХА, 2008. - Т.IV. – С.130-135.

Подписано в печать 25.09.09 г.

Бумага офсетная Гарнитура Times New Roman Формат 60х841/16.

Объем 1 печ.л. Тираж 100 экз. Заказ № 9548

Изд-во ФГОУ ВПО Ижевская ГСХА

426069, г. Ижевск, ул. Студенческая, 11



 


Похожие работы:

«Дресвянникова Елена Владимировна ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ УВЛАЖНЕНИЯ ВОЗДУХА ПТИЦЕВОДЧЕСКИХ ПОМЕЩЕНИЙ С ПРИМЕНЕНИЕМ ЭЛЕКТРОАЭРОЗОЛЯ Специальность 05.20.02 – электротехнологии и электрооборудование в сельском хозяйстве АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Ижевск 2009 Работа выполнена на кафедре Электротехнология сельскохозяйственного производства Федерального государственного образовательного учреждения высшего профессионального...»

«Гаврилов Андрей Владимирович ТЕХНОЛОГИЯ И ТЕХНИЧЕСКИЕ СРЕДСТВА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В КАБИНЕ МОБИЛЬНЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН Специальность 05.20.01 – технологии и средства механизации сельского хозяйства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Рязань – 2012 г. Работа выполнена на кафедре Автотракторные двигатели и теплотехника Федерального государственного бюджетного образовательного учреждения высшего профессионального...»

«Курзин Николай Николаевич МЕТОД ЭКСПРЕСС-АНАЛИЗА ЭЛЕКТРОТЕХНОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ И ВЫБОР ПАРАМЕТРОВ УСТАНОВОК ЭЛЕКТРОФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ОБЪЕКТЫ СЕЛЬСКОХОЗЯЙСТВЕ Н НОГО ПРОИЗВОДСТВА Специальность: 05.20.02 – Электротехнологии и электрооборудование в сельском хозяйстве Автореферат диссертации на соискание ученой степени доктора технических наук Краснодар 2008 Работа выполнена в Федеральном государственном образовательном учреждении высшего профессионального...»

«ПАСТУХОВ АлександрГеннадиевич ПОВЫШЕНИЕНАДЕЖНОСТИКАРДАННЫХПЕРЕДАЧ ТРАНСМИССИЙ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ Специальность 05.20.03— Технологии исредства технического обслуживания в сельскомхозяйстве Автореферат диссертации на соисканиеученой степени доктора техническихнаук Москва 2008 Работа выполнена вФедеральном государственномобразовательном учреждении высшегопрофессионального образованияБелгородская государственнаясельскохозяйственная академия (ФГОУ ВПОБелГСХА) и...»

«СВАЛОВА МАРИАННА ВИКТОРОВНА ОБОСНОВАНИЕ И РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА УТИЛИЗАЦИИ ОТХОДОВ ПТИЦЕВОДСТВА С ИСПОЛЬЗОВАНИЕМ БИОГАЗОВЫХ УСТАНОВОК Специальность 05.20.01 – технологии и средства механизации сельского хозяйства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург 2009 Работа выполнена на кафедре Технологии и оборудование пищевых и перерабатывающих производств в ФГОУ ВПО Ижевская государственная сельскохозяйственная...»

«СЕМЁНОВА ОЛЬГА ЛЕОНИДОВНА ИССЛЕДОВАНИЕ И РАЗРАБОТКА ТЕХНОЛОГИИ ОБРАБОТКИ пшеничной МУКИ В поле СВЕРХВЫСОКОЙ ЧАСТОТЫ Специальность 05.20.02 – электротехнологии и электрооборудование в сельском хозяйстве АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Ижевск – 2012 Работа выполнена на кафедре Технологии и оборудование пищевых и перерабатывающих производств Федерального государственного бюджетного образовательного учреждения высшего...»

«Карапетян Мартик Аршалуйсович ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ПУТЁМ УМЕНЬШЕНИЯ УПЛОТНЕНИЯ ПОЧВ ХОДОВЫМИ СИСТЕМАМИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ТРАКТОРОВ Специальность: 05.20.01 – Технологии и средства механизации сельского хозяйства Автореферат диссертации на соискание ученой степени доктора технических наук Работа выполнена в Федеральном государственном образовательном учреждении высшего профессионального образования Московском государственном университете...»

«ФИЛИППОВ АНТОН ОЛЕГОВИЧ СНИЖЕНИ Е ПОТЕРЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В СЕЛЬСКИХ СЕТЯХ 0,38 кВ С ПОМОЩЬЮ ТРАНСФОРМАТОРНО ГО СИММЕТРИРУЮЩЕ ГО УСТРОЙСТВ А Специальность 05.20.02 – Электротехнологии и электрооборудование в сельском хозяйстве АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук Санкт-Петербург – Пушкин 2010 Работа выполнена в ФГОУ ВПО Санкт-Петербургский государственный аграрный университет Научный...»

«Морозова Наталья Михайловна ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ ПОДГОТОВКИ И ХРАНЕНИЯ ЗЕРНОУБОРОЧНЫХ КОМБАЙНОВ Специальность 05.20.03 – технологии и средства технического обслуживания в сельском хозяйстве АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук Рязань - 2012 Работа выполнена на кафедре Безопасность жизнедеятельности Федерального государственного бюджетного образовательного учреждения высшего профессионального образования Рязанский государственный...»

«Старухин Роман Сергеевич повышение эффективности пред посевной обработки семян яровой пшеницы с использованием низкочастотного электрического поля Специальность 05.20.02 – Электротехнологии и электрооборудование в сельском хозяйстве Автореферат диссертации на соискание ученой степени кандидата технических наук Барнаул - 2012 Работа выполнена в ФГБОУ ВПО Алтайский государственный технический университет им. И. И. Ползунова Научный руководитель: Официальные оппоненты: Ведущая...»

«Бухаровская Анастасия Николаевна ТЯГОВО-СЦЕПНЫЕ СВОЙСТВА И УПЛОТНЯЮЩЕЕ ВОЗДЕЙCТВИЕ НА ПОЧВУ ТРАКТОРА С РЕЗИНОАРМИРОВАННЫМИ ГУСЕНИЦАМИ Специальность: 05.20.01 – Технологии и средства механизации сельского хозяйства Автореферат диссертации на соискание ученой степени кандидата технических наук Москва 2011 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Московский государственный университет...»

«Будко Сергей Иванович Методы повышения эффективности упрочнения деталей лемешно-отвальных плугов дуговой наплавкой твердыми сплавами Специальность 05.20.03 – Технологии и средства технического обслуживания в сельском хозяйстве Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт – Петербург – Пушкин 2009 Работа выполнена в ФГОУ ВПО “Брянская государственная сельскохозяйственная академия” Научный руководитель: доктор технических наук, профессор...»

«Нефедов Сергей Федорович ПО СТРОЕНИЕ ОПТИМАЛЬНЫХ СИСТЕМ БЕЗОПАСНОСТИ ЭЛЕКТРОУСТАНОВОК ОБЪЕКТОВ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ Специальность 05.20.02 – Электротехнологии и электрооборудование в сельском хозяйстве Автореферат диссертации на соискание ученой степени кандидата технических наук Барнаул - 2012 Работа выполнена в ФГБОУ ВПО Алтайский государственный технический университет им. И. И. Ползунова Научный руководитель: доктор...»

«ДЗОЦЕНИДЗЕ Тенгизи Джемалиевич ОБОСНОВАНИЕ ПАРАМЕТРОВ МАЛОГАБАРИТНЫХ ТРАНСПОРТНЫХ СРЕДСТВ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ С ШИРОКИМИ ФУНКЦИОНАЛЬНЫМИ ВОЗМОЖНОСТЯМИ Специальность 05.20.01 - Технологии и средства механизации сельского хозяйства Автореферат диссертации на соискание ученой степени доктора технических наук Москва, 2009 Работа выполнена в Государственном Научном Центре Российской Федерации - Федеральном государственном унитарном предприятии Центральный ордена...»

«Гурин тимофей юрьевич повышение долговечности форсунок авто тракторных дизелей модернизацией распылителей Специальность 05.20.03 – Технологии и средства технического обслуживания в сельском хозяйстве Автореферат диссертации на соискание ученой степени кандидата технических наук Новосибирск 2010 Работа выполнена в Федеральном государственном образовательном учреждении высшего профессионального образования Омский государственный аграрный университет (ФГОУ ВПО ОмГАУ) на кафедре...»

«КОЗЛОВ ВЛАДИМИР АЛЕКСАНДРОВИЧ ОБОСНОВАНИЕ ПАРАМЕТРОВ И РЕЖИМОВ РАБОТЫ КОМБИНИРОВАННОГО ВЫСЕВАЮЩЕГО АППАРАТА ВИБРАЦИОННОГО ТИПА Специальность 05.20.01. – Технологии и средства механизации сельского хозяйства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Красноярск – 2012 Работа выполнена в ФГБОУ ВПО Красноярский государственный аграрный университет Научный руководитель доктор технических наук, доцент Вишняков Андрей Анатольевич Официальные...»

«Камышов Юрий Николаевич ОБОСНОВАНИЕ КОНСТРУКТИВНых ПАРАМЕТРОВ РАБОЧИХ ОРГАНОВ ДИСМЕМБРАТОРОВ ДЛЯ ПОЛУЧЕНИЯ ЖИДКИХ КОРМОВых смесей Специальность 05.20.01 – Технологии и средства механизации сельского хозяйства Автореферат диссертации на соискание ученой степени кандидата технических наук Барнаул – 2012 Работа выполнена на кафедре Сельскохозяйственное машиностроение ФГБОУ ВПО Алтайский государственный технический университет им. И.И. Ползунова (АлтГТУ)

«ЧАТКИН Михаил Николаевич ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ КОМБИНИРОВАННЫХ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН С РОТАЦИОННЫ МИ АКТИВНЫМИ РАБОЧИМИ ОРГАНАМИ Специальность 05.20.01 – Технологии и средства механизации сельского хозяйства (технические науки) АВТОРЕФЕРАТ д иссертации на соискание ученой степени доктора технических наук Саранск – 200 8 Работа выполнена на кафедре...»

«Манасян Сергей Керопович ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ СУШКИ ЗЕРНА В ЗЕРНОСУШИЛКАХ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ Специальность 05.20.01 – Технологии и средства механизации сельского хозяйства АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Красноярск – 2008 Работа выполнена в ФГОУ ВПО Красноярский государственный университет Научный консультант – доктор технических наук, профессор, академик РАТН Цугленок Николай Васильевич Официальные...»

«Доржеев Александр Александрович технология ПРИГОТОВЛЕНИЯ и использования БИОТОПЛИВНОЙ КОМПОЗИЦИИ на сельскохозяйственных тракторах Специальность 05.20.01 – Технологии и средства механизации сельского хозяйства автореферат диссертации на соискание ученой степени кандидата технических наук Красноярск – 2011 Работа выполнена в ФГОУ ВПО Красноярский государственный аграрный университет Научный руководитель доктор технических наук, профессор Селиванов Николай Иванович




 
2014 www.avtoreferat.seluk.ru - «Бесплатная электронная библиотека - Авторефераты диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.